What's New In HPC Research: Quantum Clouds, Interatomic Models, Genetic Algorithms & More
HPCWire, February 14th, 2020
February 14, 2020,
Volume 263, Issue 2

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains

"Optimizing irregular-shaped matrix-matrix multiplication on GPUs

Linear algebra is a common application in big data and computational science on HPC. These operations are well-optimized when handling regularly shaped matrix inputs with GPUs, but comparatively little literature has discussed irregularly shaped matrix inputs with GPUs. In this paper (written by a team from the University of Alabama, Oak Ridge National Laboratory, the University of California, Riverside, and the University of Sydney), the authors propose two matrix-matrix multiplication algorithms for irregularly shaped inputs on GPUs. They demonstrate a speedup of up to 3.5x along with greater efficiencies in resource usage..."

Read More ...

Keywords:

 
Other articles in the IT - HPC section of Volume 263, Issue 2:
  • What's New In HPC Research: Quantum Clouds, Interatomic Models, Genetic Algorithms & More (this article)

See all archived articles in the IT - HPC section.